
www.manaraa.com

Can formal methods be a
part of large-system

development? The project
teams at Praxis used a
combination of formal

methods to help specify,
design, and verify CDIS, a
large information-display

system within an ATC-support
system. Their project

suggests that it can be
practicable and beneficial.

o handle increasing traffic, the UK is in the process of upgrading
its air-traffic-management system. The upgrade includes develop-
ing the Central Control Function, a new way to handle terminal

ANTHONY HALL, Praxis
traffic. The CCF provides automated support for controllers in
the London Area and Terminal Control Centre, including
nppmach seqzlelzci7?g, a function for generating and manipulating the
inbound-flight sequence to major airport complexes such as
Heathrow or Gatwick. The automated support is handled by sev-

eral systems, including an upgraded Sational Airspace System, a new radar system, an
Airport Data Information System, a new digital closed-circuit television, and a new infor-
mation system: the CCF Displav Information System, which we developed at Praxis and
delivered to the Civil Aviation Authority in 1992.

CDIS is responsible for displayin g information to controllers about arriving and
departing flights, weather conditions and equipment status at airports, and other support
information provided by- CDIS data-entry staff. It also maintains real-time displays of its
own status to allow the engineers to control the system.

We used formal methods in the specification, design, and verification of CDIS, mak-
ing it one of the largest applications of formal methods attempted thus far. Because of the
system’s size and complexity, we used several formal methods to develop its sequential
and concurrent aspects, in some cases combining formal with more conventional meth-
ods. We also used different notations at different project stages, both for technical rea-

0740-7459,96,s05 00 0 1996 IEEE MARCH 1996

www.manaraa.com

sons, such as when one notation gave

us better modularity, and nontechnical
reasons, such as to suit a particular
team’s expertise.

CCF AND CDIS

In the terminal control room at
LATCC, air traffic controllers use
about 30 controller workstations to dis-
play information and manipulate the
approach sequence. Other operational
staff receive display information from
20 sirnplificd controller workstations.
The CCF supervisor, engineers, and
data-entry staff operate six administra- Figwe 1. The CC2; cozt?aller~s workstation.
tivc workstations. Each controller work-
station uses a pair of computers; if one
fails, processing switches to the standby time, operational system, it has strin- in the autumn of 1993.
machine.

Figure 1 shows a CCF controller’s
workstation. The main CDIS display is
a l%inch color-graphics screen that dis-
plays pages of information. Pages are
selected using the pageselection device,
a custom-built keypad that allows one-
keystroke selection of frequently used
pages and provides extra keys for special
functions such as acknowledging
changed data and reading broadcast
messages. The controller who managers
the inbound-approach sequence - the
approach-sequence allocator - uses the
computer entry and readout device, a
touch sensitive plasma display, to direct-
ly manipulate the landing order of
flights.

CDIS receives information in real
time through an X.2S network connec-
tion to the National Airspace System
and the Airport Data Information
Systems at the major airports. It also has
its own store of information, produced
and edited internally using administra-
tive workstations. CDIS sends informa-
tion to the closed-circuit television sys-
tem over an X.25 link.

Requirements. Because CDIS is a real-

gent performance and availability
requirements: Information must be dis-
played within one or two seconds of
receipt, the system must be available at
least 99.97 percent of the time, and
there can be no single point of failure.

These requirements, shown in Table
1, were the basis of our development
methods and our design of CDIS.
Figure 2 shows the CDIS hardware
architecture. The CDIS Central
Processing System is a fault-tolerant
computer that acts as the point of com-
munication with all external systems,
provides the central repository of CDIS
data, and controls the system - includ-
ing failure management and worksta-
tion recovery. Communication bct\&.een
workstations and the CCPS is through a
LAN consisting of two token rings that
act in main/standby mode.

CDIS development. We developed
CDIS in two stages. In 1989, we
defined the requirements; we then
began the implementation project,
which ran through 1992. Upon delict-
ery, the Civil Aviation Authority inte-
grated CDIS with other CCF systems.
The system went into operational use

The software-implementation pro-
ject had five major phases: system spcc-
ification, software design, coding and
unit test, system test, and acceptance
test. Coding and testing were done in
parallel by two separate teams. One
team coded and unit tested the soft-
ware; the other integrated the software
and did black-box system testing and
acceptmce testing. We developed the
software in six incremental builds, each
one a formal handover from the imple-
mentation team to the test team.

We carried out acceptance testing
by running a subset of the system
tests - agreed on with the client -
that covered all aspects including
each functional area, all performance
requirements, and full resilience
testing.

Fault management is central to the
development and maintenance of
CDIS. Fault management began when
the implementation team delivered the
software to the test team, and cont]Ii-
ued through operational system intc-
gration and into maintenance. We am-
lyzed each fidult to determine its point
of introduction. If, for example, the
specification was wrong, then the spcc-

IEEE SOFTWARE I’,: 1 &6,fsa

www.manaraa.com

Hardware Software DevQ

~__~ -.~ ~~~-~.... -.
Distributed
processing, muld-
processor hardware

i_ _I. ~.
Dualed hardware,
hardware health monitor -ing

Data located
at point of use, optimizt
process organization

Fail-stop processes,
defensive programming

Dual
token ring \

LAN -----\ Controller
workstation

‘\s \
----, CCPS

\ i /
1;

Administrative
workstation L

CDIS

ification, design, and code were all
fixed. This meant that the CDIS speci-
fication, design, code, and user docu-
ments were always in step - and we
thus avoided the co~mnon situation in
which the code is the only real authori-
ty on what the system does.

FUNCTIONAL REQUIREMENTS

specification language, to give a precise
definition of the data maintained b>-
CDIS and the operations on the data.
In addition to being technically suit-
able, VDAI was familiar to the require-
ments team and had been used on
other projects for the CiT-il .-lviatian
Authoritv. Xt this stage, the TDM
model was onlv partial. It included the
major data structures and some of the
most critical operations.

We used three techniques to devel-
op CDTS functional requirements.
First, we built a world model using
entityrelationship analysis to describe
the real-world objects that CDIS had
to deal with, the properties of these
objects, and the relationships between
them. Second, we defined the process-
ing requirements using dataflow dia-
grams following a real-time structured-
analysis method.’

Finally, we used VDM,* a formal-

Formal and semiformal notations. During
the study, our ideas of how to use for-
anal specification changed. Initially, we
expected to define svstem operations
using the dataflon- diagrams to repre-
sent the processing for each operation,
and then to use formal specifications to
define the lowest level processes on
these diagrams. This is similar to the
method suggested by Nice Plat and his
colleagues.’ However, we found that

:d
Performance

Formal design
checking, pro

this approach did not give useful
results for two reasons. First, decom-
posing an operation into lower level
processes does not really specify the
operation at all - rather, it sketches its
design. Second, specifying the process-
es on a dataflow diagram does not
clearly specify the diagram as a whole,
because the meaning of the dataflows is
left undefined. Because of this, we
decided to carry out the formal specifi-
cation at the top level.

We defined a VDM state that rep
resented the whole state of the CDIS
system, and individual VDM opera-
tions that corresponded to individual
user-level operations - eneF7t.s in the
structured model. For example,
receipt of a message from an external
system is an event with a correspond-
ing VDM operation. One part of the
structured dataflow model is still pri-
mary: the cmtext diagmm. This shows
CDIS as a single process and identi-
fies the dataflows with all the external
systems and users of CDTS. It thus
defines what operations are needed,
along with their inputs and outputs.
However, we did not use dataflow
diagrams at all to define the eficts of
the operations.

The state in the VDM specifica-
tion is closely related to the entity-
relationship model. Although it is
possible, in principle, to derive VDM
state directly from an entity-relation-
ship model, VDM is richer and thus
it is better to replace some entity-rela-
tionship constructs by simpler and
more direct fortnal representations.
We also made the model more pre-
cise by adding more detailed con-
straints than the simple cardinalities

MARCH 1996

www.manaraa.com

O..n O..l
g Flight Approach

sequence

’ O..n O..l

Destination

I
, .I’ 1

1 ..n x Ma@
Airport airport

complex

[Al

NAS message . _^ --i

Validate
message

Update ----. j Broadcast !AN message ,’ Compute
message _ -. display

i\.\....l
Update ___--

~_ --
_~ -- _’ Approach-sequence

Arrival data data

[Bl

of the entity-relationship model.

Specification types. The following
example illustrates the different kinds of
specification. One of the CDIS func-
tions is to receive messages from the
National Airspace System about the
approach sequence and to update the
displays with the new information. The
corresponding piece of state is shown as
an entity-relationship diagram in Figure
3a, and Figure 3b shows a typical
dataflow diagram for the operation.
Figure 31~ shows that a NAS message is
first validated, and then the data from
the message is stored in the Avivnl data
store. An update is then sent to a
process that broadcasts a message over
the LAN, and this message, along with
the stored arrival data, is used to con-
pute the display’s new value.

These two diagrams ai-e typical of
structured requirements analysis.
Flowever, the datatlow diagram in par-
ticular is unsatisfactory as a requirement
statement. First, it is unclear, for exam-
ple, what the validation process does or
what happens if it fails. Second, the fact
that a message is broadcast, and that
display computation uses stored data
rather &an the LAN message contents,
are design decisions. They are of no
interest to the user and, in any case, it is
premature to assume an implementa-
tion strategy at the requirements stage.
Finally, if we specify the processes on
the diagram, we find that the resulting
low-level specifications do not help the
user understand the overall effect of
processing the message.

VDM specification. To write a VDlM

specification of the operation, we first
modeled the state from the entity-rela-
tionship diagram in VDM. The main
notations used in the VDM specifica-
tion (apart from the usual logical and
set-theoretic symbols) are:

+ state: declaration of state compo-
nents,

* inv: constraints on the state,
+ operotions: operations on the state,
l ext: external state affected by an

operation,
+ post: postcondition defining effect

of operation, and
4 Zra: value of data before oper-

a lion,
Figure 4a is a simplified version of the
VDM state.

The mathematics in Figure 4a corre-
spond closely to the entity-relationship
diagram in Figure 3a. The use of func-
tions and the constraints on their
domains and ranges represent the cardi-
nality constraints expressed in the enti-
ty-relationship diagram. However, the
VDM is an improvement because:

+ it represents the approach
sequence directly by a seg~ezce of tlights
associated with the major airport com-
plex (the ordering of flights in the
sequence is not expressed in the entity-
relationship diagram at all), and

+ it expresses that, for a flight to be
in the approach sequence for a major
airport complex, it must be headed for
an airport associated with that complex
(although not all such flights riced be in
the sequence). This fact is not express-
ible in entity-relationship notation.

To define the effect of an update
message we need more state, because
we must represent the information

about each flight and the displays.
Figure 4b shows that the definition of
this operation can be understood in
small pieces, each of which is und#:r-
standable in terms of user concepts.
Validation is encapsulated in the defini-
tion of calz__r~~dL~te_al7-i~al-data, the v~ay
the data are updated is encapsulated in
al-l-ivnl-delta-~~pdated, and the effect on
the displays is encapsulated in the FLUY-
tion nl-~-lcal-d~~ta_displayed. Each hlJC-
tion is defined elsewhere in the specifi-
cation. For example, aviual~d~ta~dis-
plalwd defines how a given collection of
arrival data appears on the screens. 1 t is
defined in terms of a lower level func-
tion that describes how arrival d:lta
appear on a particular page; that, in
turn, is based on the internal definition
of how a page is set up, and encapsulates
the rules for how arrivals are selecl:ed
and ordered for display.

Findings. i47e used VDM as part of
requirements analysis because we
believed that its precision would both
help clarify our understanding of l:he
requirements and make them con-
plete and unambiguous. This belief
was borne out in practice. During rhe
study we asked a lot of questions -
many of them a result of trying to
formalize certain requirements ~
and thus gained a good understand-
ing of what the system was intended
to do. However, we also encountered
several problems.

Whether formal or informal, this
kind of functional specification cannot

distinLguish essential requirements from
those that are merely desirable. In addi-
tion, the first-order logic lets us write

www.manaraa.com

state
airports:setof Airport
fligl~ts:setof Flight
MACs:set of MAC
airport-IYACs: map Airport to ?lAC
approachPseqs:map MAC to seq Flighr
destination:map Flight to Airport

inv
domdestination = flights i\
ran destination C airports 4
dom airportAYACs L airports '5
ran airport..lvlACs = MACs \
dom approach.-seqs i MACS A
~rn(dom approach-seqso

eiems approach-seqsim) L
if t flights 1 airporr~lYACs(desti=arion!=j!= ni!

IA1

state
arrival-data :map Flight to Dara
edd-displays:map EDD to EDD-dispiay
edd-pages:map EDD to Page

operations
AS_.MSG(msg:Approach_Sequen~e-~Yessage~

ext
wr arrival--data
wr approach-seqs
wr edd-displays
rd edd--pages

post

if can-update-arrival-datacvsg, arriva:-tsza)
then arrival-data-updatedcmsg. arriva:-tie;a. a:-rival~tis~a, -

approach-seqs, approach-seqs;
arrival_data_displayedjedd?ages, zrri-~~l~ta:a.

approach-seqs, edd_dise51aysi
else arrival-data = arriv~al-data ::

approach-seqs = approach-seqs '
edd-displays = edd-displays

fi

WI

down properties of each individual
operation, but requirements are often
expressed in more global terms as prop-
erties of all operations - for example,
that all operations must be reversible.
Such higher order properties cannot be
directly expressed using VDM.

Similarly, any specification based
on a system model and a specific set of
operations has already committed to a
considerable level of detail. The user
might like to specify, for example, that
there should be a complete set of
query operations without having to
specify what form these operations
might take. Finally, only functional
requirements can be captured using
this kind of specification; usability,

performance, reliability, and aspects of
safety are all outside its scope.

SYSTEM SPECIFICATION

At the beginning of implementation,
we decided to produce a complete spec-
ification of CDIS to serve as a basis for
design. Because of our experience in the
requirements study, we abandoned the
use of dataflow diagrams and based the
specification primarily on the formal
notation. However, a specification
entirely in VDM would not have been
adequate for two main reasons:

+ VDM provides no real help in
specifying the user-interface details

- one of the most important aspects
of CDIS.

+ The VDM specification describes
only sequential aspects of behavior.
CDIS processes many inputs concur-
rently, and we had to know which oper-
ations could occur concurrently and
how they might interfere with each
other.

We therefore produced the system
specification in three parts: a formal co~*f2
specz@ation, a set of user-inte$zce defini-
tions, and a conntm-en9 specif;;ation. The
specifications constituted three different
views of the system, rather than specifi-
cations of three different system parts.
Figure 5 shows the relations between
the views. The core specification
described the data managed by CDIS
and every operation that CDIS could
perform. Each operation was specified
at a semantic level by defining its inputs,
outputs, and effect on the state. For
each operation in the core specification,
there was a corresponding user-inter-
face definition that described the dia-
logue needed between user and
machine to effect the operation, the
required keystrokes or mouse actions,
and the screen’s appearance during the
dialogue. The concurrency specification
showed what real-world processes could
carry out the operations. It also identi-
fied the data accesses and possible oper-
ation sequence of each process.

Core specification. Because CDIS has
about 150. specification-level operations,
we faced the problem of how to struc-
ture the specification into understand-
able modules. The top-level modules
are related to major areas of functionali-
ty: arrivals, departures, airports, dis-
plays, and page, communications, and
engineering management. Unfor-
tunately, these modules are not inde-
pendent and typical operations affect
the state of several modules. For exam-
ple, certain errors on the external links
cause communications with the

MARCH 1996

www.manaraa.com

National Airspace System to be lost;
portions of the arrivals database thus
become inv&d and result in changes on
controller displays. To express this type
of behavior clearly, we needed a modu-
larization mechanism that let us write
operations affecting the state of several
modules in a natural way.

WC considered three alternatives:
VDM, which did not have a useful
modularization mechanism; 2, which
seemed to offer the kind of structuring
we n&cd;’ and VVSL, a language with
a VDM-like syntax and a well-devel-
oped module structure that provided
most of the facilities we needed.’
Recausc we had used VDM during the
requirements analysis, wc were reluc-
tant to switch to % ~ even though we
considered its schema calculus ideal for
the kind of modularization we wanted.
Furthermore, Z’s error-handling cor-
ventions are clumsy compared with
those of VVSL. We therefore decided
to use VVSL.

When one VVSL module imports
another, it imports the constructs that
are exported from the imported mod-
ule. Unfortunately, there is no way of
importing operations in this way
because, unlike Z, WSL has no calcu-
lus for combining operations. This
caused us problems in building up the
specification. For example, receipt of
an arrival-update message affects the
state in the arrivals and displays mod-
ules. We wanted to write the update as
the conjunction of an operation
update-~arrival-data in the arrival

-data module and an operation
update~arrival~displays inthevar-
ious display modules. However, in
VVSL this was impossible, so we had
to write two functions: cni7-updatep

nrt*ival-data and n?-?-ival_dilta_llpdLzted.
The first corresponds to the error
checking of update~arrival-data,

the second to the actual updates that
would be carried out. The operation
in the toll-level module then uses

Core
specification

Concurrency
specification

User-interface
definitions

these two functions to describe the
effect in the arrivals module. This
convention is the one that was used in
Figure 4b. It unfortunately led to
clutter in the specification, and oper-
ations were often not defined where
WC expected to find them. This made
the specification less readable than we
would have liked.

The only tools we used in preparing
the core specification were some docu-
ment-preparation macros for La’l’ex.
At the time, the only type-checking
tools available would not let us gener-
ate easily readable output, nor would
they support VVSL and its module
constructs. If a suitable type-checker
had been available, we could have
eliminated many syntactic errors in the
specification. On the other hand, we
made several extensions to the notation
that let us write the specification in a
more compact and understandable
way, and tools might have prevented us
from doing that.

User-interface definitions. The user-
interface definitions contained two
kinds of information: the interface’s
physical appearance using pictures and
text and the syntax of the user dialogues
using state-transition diagrams. The
definitions were developed using throw-
away prototypes.

Each operation described at an
abstract level in the core specification
had a concrete specification in a user-

interface definition. However, the level
of abstraction was not uniform; it
depended on the operation’s complexity
and importance. At one extreme, there
is a single operation in the core speclfi-
cation, Edit-Page, that corresponds to a
complete document, the Editor’s User-
Tnterface Definition. At the other
extreme, the operations in the core
specification describing how the
approach-sequence allocator manipu-
lates flights are at the level of individual
keystrokes, because the behavior of this
interface is critical and subtly related to
the information being received from the
National Airspace System while the
operations are in progress.

Concurrency specification. The concur-
rency specification describes the i~hel--
e77t concurrency of the CDTS environ-
ment - the processes that could run
concurrently in the real world. There
was one such process for each CD’IS
user-input device, each connection to
an external system, and each CDIS
hardware device that was monitored for
failure and recovery.

Wc used two notations for the con-
currency specification. Each process v~as
defined in the language of CSP.” The
alphabet of each process WJS the set of
VVSL operations available to it. JVe
thus checked that the concurrency spec-
ification and core specification were
consistent.

We also drew dataflow diagrams

IEEE SOFTWARE

www.manaraa.com

showing all the processes and all the
state variables they read and wrote.
These diagrams, unlike those used in
structured analysis, had a precise
semantics: a circle represented a con-
current process, a data store represented
a state variable, and dataflows represent-
ed read and write access to state vari-
ables by processes. This identified the
shared data that needed to be accessed
by several processes simultaneously.

Findings. Overall, I believe the speci-
fication phase was successful. It defined
the functionality of CDIS precisely and
provided a firm foundation for the pro-
ject. Although the techniques we were
using had not been used before in this
combination or on this scale, we

of the user-interface changed from an
“inquire and get a snapshot” style to a
continuous-update style. This had a
major effect on the core specification
that we would have preferred to avoid.

We also had difficulty choosing the
right level of detail. For example, we did
not specify the validation of messages

understood their strengths and limita-
tions and had no major unexpected dif- well and some of the internal-consisten-
ficulties. cy checking - which should have been

However, the specification is far part of the specification - was left to
from perfect; there are problems the design phase.
remaining and lessons to be learned. Finally, the specification is only an
First, it is hard to get a system overview approximation of the real CDIS behav-
from the specification. The formal spec- ior. At the project’s outset we made the
ification is not top-down - indeed, simplifying assumption that operations
because we followed a declaration- are atomic. In practice, hoM-ever, an
before-use style, it is almost completely operation can take sex-era1 seconds to
bottom-up. We also failed to write execute, giving ample time for other
enough English commentary in the operations to interfere. .-l a result, there
core specification, which makes it even are observable states of CDIS - such as
more difficult to read. when only some screens have updated

We also faced the inevitable prob- in response to a message - which are
lems at the boundaries between the not allowed by the specification.
three kinds of specification. The user- Intuitively, it is obvious that these devia-
interface definitions were not as com- tions from the specification are “harm-
plete as the core specification because less,” but it is not clear how to decide
the concrete representations in the what is and what is not allowable behav-
user-interface definitions were (neces- ior. Further work on refining shared
sarily) examples of the appearance, not systems may illuminate this question.’
exhaustive definitions. For example, we Writing the specification was a use-
failed to specify the colors of all aspects ful exercise in its own right. The
of the engineer’s display under all cir- process of defining the functionality
cunistances, leading to uncertainties as and reviewing it with the Civil
to what the behavior was meant to be. Aviation Authority helped us clarify
We also did not separate concerns as requirements precisely. The formality
much as we would have liked. During of the notation certainly helped us

the design phase, for example, our idea focus this process.

Once complete, the specification was
used for change control. Like any large
project, CDIS suffered many require-
ments changes during its implementa-
tion. The existence of a clear and com-
plete definition was invaluable in help-
ing us decide what was and was not a
real change, and in evaluating the
impact of proposed changes.

The specification was the basis for
design, implementation, and testing.
For testing, the system specification
superseded the original functional
requirements, because it included every-
thing they contained and more. The
system tests were derived by the test
team from the system specification and
the nonfunctional requirements. In par-
ticular, the formal specification was
used to derive black-box tests by equiva-
lence partitioning and boundary value
analysis in a systematic way. Every test
was traced back to the part of the speci-
fication that was being tested, giving
complete visibility of test coverage.

Finally, the specification served as a
basis for the user documentation, which
was, inevitably, prepared before the sys-
tem was complete. Again, the specifica-
tion’s precision and completeness mini-
mized the extent to which the user doc-
umentation had to be revised once the
real system was available.

DESlGN

As Figure 6 shows, the CDIS design
consisted of an overview and four kinds
of design components. There is a differ-
ence between partitioning the design
and the specification. Although the
three kinds of specification were three
different views of the same thing, the
four different designs - functional,
process, user-interface, and infrastruc-
ha-e design -were designs for different
pn~.~ of the software. Thus, the relation-
ship between the design components
reflected both a division of the software

MARCH 1996

www.manaraa.com

into subsystems and a division of effort
between teams. Also, because the differ-
ent design components had different
issues and required different progran-
ming styles, we used different notation
in each of the four kinds of design. We
used formal methods in designing the
application modules, the processes, and
the LAN software.

Functional design. To design the appli-
cation modules, we devised a module
structure for the application code and
then specified the operations and inter-
nal data for each module. The module
structure was derived from the core-
specification structure, with two modifi-
cations. First, each module was usually
divided into two layers - an operauon
layer, used by the process or user-inter-
face software, and a services layer, used
by other application modules. Each
module was then divided into three
parts for CCPS-specific processing,
workstation-specific processing, and
common code.

Our basic idea was to specify the
application modules in VVSL as refine-
ments of the corresponding specifica-
tion modules. That is, the specification
data types would be transformed into
more concrete, computer-oriented
types, and the operations redefined to
use these types.

At first, we planned to use VVSL
only for the more critical modules and
to develop those quite formally, writing
down the refinement relations and the
corresponding proof obligations. For
less critical modules, we planned to
write more code-oriented specifica-
tions. Neither of these intentions was
carried out in practice. First, it proved
awkward to USC: different notations, sol
we decided to specify almost everything
in VVSL (for simple cases we did not
give the full specification of each opera-
tion, only its signature). Conversely, it
turned out that the refinement relations
were extremely large and cumbersome

to write down, and we abandoned the
attempt to establish a bully formal con-
nection between the specification and
the design. One problem was the
large state-space of CDIS, in which
each operation affected a large part
of the state.

There was also a more basic reason
we were unable to write down the
refinement relation. Although the set of
data in a design module was a concrete
form of the data in the corresponding
specification modules, the design mod-
ule as a whole was not a refinement of
the specification module, because it usu-
ally had a completely different set of
operations. The specification of a user
operation was not refined by a single
operation on an application module;
rather, it was implemented by a t?pansac-
tioz that involved process code and user-
interface code as well as operations in
several application modules.

For example, Figure 7 shows the
transaction involved in a single user
operation to set an airport data value.
No single operation in the airport
design modules corresponds to the
specification operation - instead, the
module offers services that allow the
user interface to check the validity of
the operation, to send a request to the
CCPS to make the change and broad-
cast the new data, an operation to
accept the new data at the workstation,
and many query operations to allow dis-
play of the new data. It is an open ques-
tion how, formally, these operations are
related to the formal specification.

Process design. Process design includ-
ed the design of processes, tasks, inter-
process communication, and data shar-
ing. m7e derived the design primarily
from the concurrency specification,
along with the nonfunctional require-
ments - especially performance - and
the characteristics of the machines and
operating systems we were using. We
began by identifying the processes and

,“,._” i i x - ” ^. I “3 i * 8”

Design overview
“” ^^^^ (..l

;’

gzwe 6. CDS desip cvm$onents.

their communications mechanisms and
shared data, and documenting thcese
using dataflow diagrams. We then
defined the response of each process to
each possible event.

We used finite-state machines to
diagram the process design. The only
novel thing we did was to use WSL
predicates as a way of characterizing
complex states. Also, the actions in the
finite-state machines were application-
module operations, specified in WSL.
In the more complex machines, we
had difficulty relating the machines
back to the specification they wlzre
implementing. In retrospect, encoding
the finite state machines in VVSL
might have been a better approach,
g-iving us a better integration with the
module specifications.

User-interface design. We derived this
design from the user-interface definitions
and knowledge of the application-module
services. The user interface was imple-
mented using IBM Presentation
Manager, which requires a particular pro-
gramming style. WC expressed the design
as specifications of Presentation-Manager

IEEE SOFTWARE

www.manaraa.com

Check :
input ;,’ “‘I Request

,: ” _ ,Bl i ,
update

i: AIRPORT-P

. 4 r ‘,_

“dpdtate
Save“,..

1 Read

aa Broadcast update “‘,,.,
i new

update I, :I+
: data

. . n,_,l,_

“>n n SM, IC I , I a-

_~‘

‘=.n_ ,a il,*l_,* , I , ,~,
n’

EDD P-TO-P ~~ -- -- USER BCAST ~~ - LAN-IN --c-” EDD

Initiating PS/2

AIRPORT-S

CCPS

1 AIRPORT-P

All PS,‘2s

window classes, defining the messages proofs. Because the L-L\: n-as such a been published elsewhere.‘”
and responses each could process. critical component and its design so

complex, we were concerned about its
infrastructure design. The infrastructure correctness. T;17e attempted proofs of

mainly involved the LAN sofhvare. As correctness in two areas. The first was at
part of the overall design, we developed the interface hen\-een the LA-KY and the
a definition of the required LAV proto- engineering part of the CDIS applica-
co1 and the interface between the LAX tion. The L,L\’ software detects failed
software and the rest of CDIS. We then machines and connections. It then either
produced a design for the LAN software takes appropriate action or passes infor-
itself. mation to the rest of CDIS, which then

The LAN software was a difficult makes decisions about stopping and
area because the requirements were starting failed machines. Because
stringent: in-order delivery of all mes- Imachines at e2lch end of the link can fail
sages, without duplication, over two at anv time - e\-en during restart after a
token rings with an automatic and invisi- previous failure - it is hard to eliminate
ble switch in case of failure. the possibility of deadlock. To veri’& the
Performance considerations dictated protocol, u-e n-rote a simplified version
that the unreliable broadcast service pro- and used Edinburgh Universitv’s
vided by the Netbios protocol had to be Concurrency 1170rkbench9 to establish
used as the basis of most communica- temporal formulas representing facts
tions, so a complex layer of CDIS soft- such as “following a failure it is alw2avs
ware had to be built on top. eventually possible to recot-er.” This

The requirements for the LAY soft- gave us some confidence in the proto-
ware were initially expressed using ~01’s correctness.
VVSL. ‘Ilhis was not entirely successful, The second area u-as recovering from
because VVSL did not easily capture the message loss. TT’e II-rote two CCS
protocol’s dynamic behavior and the processes: one representing a desired
relationship between the behaviors at behavior specification and another
the two ends of the communication. For intended to implement that beha\Gor.
that purpose, we needed a notation that U7e tried to pro\-e that the implementa-
supported concurrency. We used the tion was correct, even when a loss was
Calculus of Communicating System? suffered during recovery. However, this
for later parts of the requirements and was not possible because the protocol
for design. We translated the CCS suffered from a subtle concurrency
processes directly into the implementa- problem. Because it would have been
tion code. We used a form of value- almost impossible to find that bug
passing CCS in which we incorporated during testing, attempting the proof
WSL definitions of data types and mes- let us correct the design rather than
sage structures. put a system into service that could at

The LAN software design was the some point exhibit an incomprehensi-
only area of CDIS in which we used ble fault. Details of this work have

Findings. The use of formal methods
in large-system design is less understood
than their use in specification. We had
some difficulties designing CDIS as for-
mally as we would have liked.

Because design is many-dimensional,
we were forced to use different methods
for designing different parts of the sys-
tem and there was no unifying way we
could formalize the design as a whole -
no theory of software architecture that
we could use to validate the design. In
particular, conventional refinement rules
do not apply when the design structure
differs from the specification structure
~ as it inevitably will in any large, dis-
tributed system. Our initial misunder-
standing of this point led to problems at
the interface between the application
modules and the user interface, and a lot
of necessary operations were missed in
our first attempts to specify the applica-
tion modules.

We had difficulty deciding on the
right level of formality because the
design was large and it was impractical
to formalize all of it. We did not always
make the right decisions. Formalizing
too much gave LIS unnecessary work; in
some pathological cases, the formal
specification was more complicated than
the code itself. Not formalizing enough
meant that developers were sometimes
faced with operations for which they had
signatures but no clear definition of
what was required. We probably should
have adopted a simple rule: specie all
update operations.

Despite these problems, the func-
tional design was largely successful in

MARCH 1996

www.manaraa.com

generating a sound design that satisfied
the specification. Few of the faults in
CDIS can be attributed to an incorrect
relationship between the specification
and the functional design. The main
benefit of the formal application design
was that each module interface was pre--
cisely defined so clients knew exactly
what they could rely on. We also found
that, starting from the WSL mod&
specifications, the implementation of
application modules was relatively
straightforward and the code usually
reflected the specification in a fairly
direct way. ‘I’his gave us good traceabili-,
ty between the code and the design. In
some cases, the code was developed.
using rigorous correctness arguments.

As for infrastructure design, the CCS’
design of the LAN software was particu-
larly successf~~l in mastering the com-
plexity of a difficult area and generating
extremely reliable code.

We were unable to use a really formal
process, such as carrying out proofs, to
any large extent. This does not mean that
such a process is always impractical; how-
ever, yogi have to balance the cost of using
formality against the cost of zot using it.
From the developer’s point of view, the
purpose of a formal step such as a proof is
to discover errors (there are other purpos-
es, such as when a customer uses a proof
for ~JSJUY~~XL’, which has different costs and1
benefits). The expected cost of not carry-,
ing out a proof depends on the probability
of an error existing that the proof alone
would have discovered, along with the
cost of that error. In the case of refine-
mcnt proofs, we believed that the expect-
ed cost was small compared with the cost
of achrally doing the proofs; in the case of
the LAN we believe it was large and easill
justified our modest proof effort.

The operational CDIS software
contains about 197.000 lines of non-.

blank, noncomment C code. A compa-
rable amount of code was also written
for test harnesses, emulators, and other
nonoperational software. The specifica-
tion documents were about 1,200 pages
and the design documents about 3,000
pages.

As Table 2 shows, the total effort on
the implementation project was about
15,500 person days. At about 13 lines of
code per day, the overall effort was com-
parable with or better than other pro-
iects of the same size and kind (it is bet-
ter than a simple Cocomo” prediction,
for example). If anything, the use of for-
mal methods saved rather than cost us
effort. The distribution of effort is not
very different from the standard
Cocomo model, although as Table 3
shows, we did spend a slightly higher
percentage of time on requirements and
specification.

Faults. During development, develop-
ers delivered about 11 faults per thou-
sand lines of code to the integration and
system-test team. In the first 20 months

after delivery, CDIS manifested ab#Dut
150 faults - about 0.75 faults per
KLOC. We believe this figure is signifi-
cantly better than that on comparable
projects.” Furthermore, few of these
faults were specification or requirements
problems, which often persist into the
delivered system and prove costly to
eliminate.

Customer’s view. The Civil Aviation
Authority was mainly affected by tour
use of formal methods in the system
specification, rather than the design.
From their perspective, the use of for-
mal methods in system specification had
both advantages and disadvantages. The
main advantages were:

+ The specification was comprehen-
sive. The C4A team could refer to the
specification to answer almost any ques-
tion about what CDIS would do.

+ The specification was precise.
There was rarely any doubt about what
it meant and how CDIS would behave.

+ The use of the specification to
derive the system tests meant that

IEEE SOFTWARE

www.manaraa.com

CAA could see the level of test&less
of CDIS at any time.

On the other hand, there were some
drawbacks:

+ It was difficult to get an overvievr
from the formal specification, because it
was neither top-down nor hierarchical.

* The core specification was a poor
aid to internal communication at CAA.
Because the notation was only under-
standable to the CAA team directly
working on CDIS, they had to interpret
the specification to other people in the
organization.

+ The specifications were not clear

+ The user-interface specification was
not as precise and complete as the core
specification and thus was not as well
defined as it should have been.
Furthermore, the relationship between
the two specifications was not always clear.

about certain timing issues - in partic-
ular the point at which events became
visible on the user interface.

The lessons that should be drawn
from this for fuhrre use of formal me&
ods are two. First, the formal specifica-
tion should be accompanied by much
more informal explanation using
English text, diagrams, and any other
convenient notation. Second, more
emphasis should be placed on making
the user-interface specification precise
and complete.

C

making that effective by combining for-

DE vans a large and complex pro-
ject and man\- factors contributed

to its success. One important factor n’as
that we used formal methods with other
good software-engineering practices. I
think we ha\-e learned lessons about

mality with more comprehensible expla-
nations and better specification structure.

Fornlal methods also contributed to
our design process, but there are clearly
many other aspects of good design.
Carrying out effective formal design
will require more work on understand-
ing the different design dimensions and
large-scale architectures.

Using formal methods helped LIS to
build the right system and helped us
to build it right - at no extra cost.
Our project shows that using formal
methods on real, large-scale projects
is not only practicable but beneficial.
The question software engineers
should now be asking about formal
methods is not whether to use them,
but horn best to benefit from them as
part of a complete software-engineer-
ing approach. +

MARCH 1996

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

