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Can formal methods be a 
part of large-system 

development? The project 
teams at Praxis used a 
combination of formal 

methods to help specify, 
design, and verify CDIS, a 
large information-display 

system within an ATC-support 
system. Their project 

suggests that it can be 
practicable and beneficial. 

o handle increasing traffic, the UK is in the process of upgrading 
its air-traffic-management system. The upgrade includes develop- 
ing the Central Control Function, a new way to handle terminal 
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traffic. The CCF provides automated support for controllers in 
the London Area and Terminal Control Centre, including 
nppmach seqzlelzci7?g, a function for generating and manipulating the 
inbound-flight sequence to major airport complexes such as 
Heathrow or Gatwick. The automated support is handled by sev- 

eral systems, including an upgraded Sational Airspace System, a new radar system, an 
Airport Data Information System, a new digital closed-circuit television, and a new infor- 
mation system: the CCF Displav Information System, which we developed at Praxis and 
delivered to the Civil Aviation Authority in 1992. 

CDIS is responsible for displayin g information to controllers about arriving and 
departing flights, weather conditions and equipment status at airports, and other support 
information provided by- CDIS data-entry staff. It also maintains real-time displays of its 
own status to allow the engineers to control the system. 

We used formal methods in the specification, design, and verification of CDIS, mak- 
ing it one of the largest applications of formal methods attempted thus far. Because of the 
system’s size and complexity, we used several formal methods to develop its sequential 
and concurrent aspects, in some cases combining formal with more conventional meth- 
ods. We also used different notations at different project stages, both for technical rea- 
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sons, such as when one notation gave 

us better modularity, and nontechnical 
reasons, such as to suit a particular 
team’s expertise. 

CCF AND CDIS 

In the terminal control room at 
LATCC, air traffic controllers use 
about 30 controller workstations to dis- 
play information and manipulate the 
approach sequence. Other operational 
staff receive display information from 
20 sirnplificd controller workstations. 
The CCF supervisor, engineers, and 
data-entry staff operate six administra- Figwe 1. The CC2; cozt?aller~s workstation. 
tivc workstations. Each controller work- 
station uses a pair of computers; if one 
fails, processing switches to the standby time, operational system, it has strin- in the autumn of 1993. 
machine. 

Figure 1 shows a CCF controller’s 
workstation. The main CDIS display is 
a l%inch color-graphics screen that dis- 
plays pages of information. Pages are 
selected using the pageselection device, 
a custom-built keypad that allows one- 
keystroke selection of frequently used 
pages and provides extra keys for special 
functions such as acknowledging 
changed data and reading broadcast 
messages. The controller who managers 
the inbound-approach sequence - the 
approach-sequence allocator - uses the 
computer entry and readout device, a 
touch sensitive plasma display, to direct- 
ly manipulate the landing order of 
flights. 

CDIS receives information in real 
time through an X.2S network connec- 
tion to the National Airspace System 
and the Airport Data Information 
Systems at the major airports. It also has 
its own store of information, produced 
and edited internally using administra- 
tive workstations. CDIS sends informa- 
tion to the closed-circuit television sys- 
tem over an X.25 link. 

Requirements. Because CDIS is a real- 

gent performance and availability 
requirements: Information must be dis- 
played within one or two seconds of 
receipt, the system must be available at 
least 99.97 percent of the time, and 
there can be no single point of failure. 

These requirements, shown in Table 
1, were the basis of our development 
methods and our design of CDIS. 
Figure 2 shows the CDIS hardware 
architecture. The CDIS Central 
Processing System is a fault-tolerant 
computer that acts as the point of com- 
munication with all external systems, 
provides the central repository of CDIS 
data, and controls the system - includ- 
ing failure management and worksta- 
tion recovery. Communication bct\&.een 
workstations and the CCPS is through a 
LAN consisting of two token rings that 
act in main/standby mode. 

CDIS development. We developed 
CDIS in two stages. In 1989, we 
defined the requirements; we then 
began the implementation project, 
which ran through 1992. Upon delict- 
ery, the Civil Aviation Authority inte- 
grated CDIS with other CCF systems. 
The system went into operational use 

The software-implementation pro- 
ject had five major phases: system spcc- 
ification, software design, coding and 
unit test, system test, and acceptance 
test. Coding and testing were done in 
parallel by two separate teams. One 
team coded and unit tested the soft- 
ware; the other integrated the software 
and did black-box system testing and 
acceptmce testing. We developed the 
software in six incremental builds, each 
one a formal handover from the imple- 
mentation team to the test team. 

We carried out acceptance testing 
by running a subset of the system 
tests - agreed on with the client - 
that covered all aspects including 
each functional area, all performance 
requirements, and full resilience 
testing. 

Fault management is central to the 
development and maintenance of 
CDIS. Fault management began when 
the implementation team delivered the 
software to the test team, and cont]Ii- 
ued through operational system intc- 
gration and into maintenance. We am- 
lyzed each fidult to determine its point 
of introduction. If, for example, the 
specification was wrong, then the spcc- 
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ification, design, and code were all 
fixed. This meant that the CDIS speci- 
fication, design, code, and user docu- 
ments were always in step - and we 
thus avoided the co~mnon situation in 
which the code is the only real authori- 
ty on what the system does. 

FUNCTIONAL REQUIREMENTS 

specification language, to give a precise 
definition of the data maintained b>- 
CDIS and the operations on the data. 
In addition to being technically suit- 
able, VDAI was familiar to the require- 
ments team and had been used on 
other projects for the CiT-il .-lviatian 
Authoritv. Xt this stage, the TDM 
model was onlv partial. It included the 
major data structures and some of the 
most critical operations. 

We used three techniques to devel- 
op CDTS functional requirements. 
First, we built a world model using 
entityrelationship analysis to describe 
the real-world objects that CDIS had 
to deal with, the properties of these 
objects, and the relationships between 
them. Second, we defined the process- 
ing requirements using dataflow dia- 
grams following a real-time structured- 
analysis method.’ 

Finally, we used VDM,* a formal- 

Formal and semiformal notations. During 
the study, our ideas of how to use for- 
anal specification changed. Initially, we 
expected to define svstem operations 
using the dataflon- diagrams to repre- 
sent the processing for each operation, 
and then to use formal specifications to 
define the lowest level processes on 
these diagrams. This is similar to the 
method suggested by Nice Plat and his 
colleagues.’ However, we found that 
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this approach did not give useful 
results for two reasons. First, decom- 
posing an operation into lower level 
processes does not really specify the 
operation at all - rather, it sketches its 
design. Second, specifying the process- 
es on a dataflow diagram does not 
clearly specify the diagram as a whole, 
because the meaning of the dataflows is 
left undefined. Because of this, we 
decided to carry out the formal specifi- 
cation at the top level. 

We defined a VDM state that rep 
resented the whole state of the CDIS 
system, and individual VDM opera- 
tions that corresponded to individual 
user-level operations - eneF7t.s in the 
structured model. For example, 
receipt of a message from an external 
system is an event with a correspond- 
ing VDM operation. One part of the 
structured dataflow model is still pri- 
mary: the cmtext diagmm. This shows 
CDIS as a single process and identi- 
fies the dataflows with all the external 
systems and users of CDTS. It thus 
defines what operations are needed, 
along with their inputs and outputs. 
However, we did not use dataflow 
diagrams at all to define the eficts of 
the operations. 

The state in the VDM specifica- 
tion is closely related to the entity- 
relationship model. Although it is 
possible, in principle, to derive VDM 
state directly from an entity-relation- 
ship model, VDM is richer and thus 
it is better to replace some entity-rela- 
tionship constructs by simpler and 
more direct fortnal representations. 
We also made the model more pre- 
cise by adding more detailed con- 
straints than the simple cardinalities 
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of the entity-relationship model. 

Specification types. The following 
example illustrates the different kinds of 
specification. One of the CDIS func- 
tions is to receive messages from the 
National Airspace System about the 
approach sequence and to update the 
displays with the new information. The 
corresponding piece of state is shown as 
an entity-relationship diagram in Figure 
3a, and Figure 3b shows a typical 
dataflow diagram for the operation. 
Figure 31~ shows that a NAS message is 
first validated, and then the data from 
the message is stored in the Avivnl data 
store. An update is then sent to a 
process that broadcasts a message over 
the LAN, and this message, along with 
the stored arrival data, is used to con- 
pute the display’s new value. 

These two diagrams ai-e typical of 
structured requirements analysis. 
Flowever, the datatlow diagram in par- 
ticular is unsatisfactory as a requirement 
statement. First, it is unclear, for exam- 
ple, what the validation process does or 
what happens if it fails. Second, the fact 
that a message is broadcast, and that 
display computation uses stored data 
rather &an the LAN message contents, 
are design decisions. They are of no 
interest to the user and, in any case, it is 
premature to assume an implementa- 
tion strategy at the requirements stage. 
Finally, if we specify the processes on 
the diagram, we find that the resulting 
low-level specifications do not help the 
user understand the overall effect of 
processing the message. 

VDM specification. To write a VDlM 

specification of the operation, we first 
modeled the state from the entity-rela- 
tionship diagram in VDM. The main 
notations used in the VDM specifica- 
tion (apart from the usual logical and 
set-theoretic symbols) are: 

+ state: declaration of state compo- 
nents, 

* inv: constraints on the state, 
+ operotions: operations on the state, 
l ext: external state affected by an 

operation, 
+ post: postcondition defining effect 

of operation, and 
4 Zra: value of data before oper- 

a lion, 
Figure 4a is a simplified version of the 
VDM state. 

The mathematics in Figure 4a corre- 
spond closely to the entity-relationship 
diagram in Figure 3a. The use of func- 
tions and the constraints on their 
domains and ranges represent the cardi- 
nality constraints expressed in the enti- 
ty-relationship diagram. However,  the 
VDM is an improvement because: 

+ it represents the approach 
sequence directly by a seg~ezce of tlights 
associated with the major airport com- 
plex (the ordering of flights in the 
sequence is not expressed in the entity- 
relationship diagram at all), and 

+ it expresses that, for a flight to be 
in the approach sequence for a major 
airport complex, it must be headed for 
an airport associated with that complex 
(although not all such flights riced be in 
the sequence). This fact is not express- 
ible in entity-relationship notation. 

To define the effect of an update 
message we need more state, because 
we must represent the information 

about each flight and the displays. 
Figure 4b shows that the definition of 
this operation can be understood in 
small pieces, each of which is und#:r- 
standable in terms of user concepts. 
Validation is encapsulated in the defini- 
tion of calz__r~~dL~te_al7-i~al-data, the v~ay 
the data are updated is encapsulated in 
al-l-ivnl-delta-~~pdated, and the effect on 
the displays is encapsulated in the FLUY- 
tion nl-~-lcal-d~~ta_displayed. Each hlJC- 
tion is defined elsewhere in the specifi- 
cation. For example, aviual~d~ta~dis- 
plalwd defines how a given collection of 
arrival data appears on the screens. 1 t is 
defined in terms of a lower level func- 
tion that describes how arrival d:lta 
appear on a particular page; that, in 
turn, is based on the internal definition 
of how a page is set up, and encapsulates 
the rules for how arrivals are selecl:ed 
and ordered for display. 

Findings. i47e used VDM as part of 
requirements analysis because we 
believed that its precision would both 
help clarify our understanding of l:he 
requirements and make them con- 
plete and unambiguous. This belief 
was borne out in practice. During rhe 
study we asked a lot of questions - 
many of them a result of trying to 
formalize certain requirements ~ 
and thus gained a good understand- 
ing of what the system was intended 
to do. However,  we also encountered 
several problems. 

Whether formal or informal, this 
kind of functional specification cannot 

distinLguish essential requirements from 
those that are merely desirable. In addi- 
tion, the first-order logic lets us write 
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state 
airports:setof Airport 
fligl~ts:setof Flight 
MACs:set of MAC 
airport-IYACs: map Airport to ?lAC 
approachPseqs:map MAC to seq Flighr 
destination:map Flight to Airport 

inv 
domdestination = flights i\ 
ran destination C airports 4 
dom airportAYACs L airports '5 
ran airport..lvlACs = MACs \ 
dom approach.-seqs i MACS A 
~rn( dom approach-seqso 

eiems approach-seqsim) L 
if t flights 1 airporr~lYACs(desti=arion!=j!= ni! 

IA1 

state 
arrival-data :map Flight to Dara 
edd-displays:map EDD to EDD-dispiay 
edd-pages:map EDD to Page 

operations 
AS_.MSG(msg:Approach_Sequen~e-~Yessage~ 

ext 
wr arrival--data 
wr approach-seqs 
wr edd-displays 
rd edd--pages 

post 

if can-update-arrival-datacvsg, arriva:-tsza) 
then arrival-data-updatedcmsg. arriva:-tie;a. a:-rival~tis~a, - 

approach-seqs, approach-seqs; 
arrival_data_displayedjedd?ages, zrri-~~l~ta:a. 

approach-seqs, edd_dise51aysi 
else arrival-data = arriv~al-data :: 

approach-seqs = approach-seqs ' 
edd-displays = edd-displays 

fi 

WI 

down properties of each individual 
operation, but requirements are often 
expressed in more global terms as prop- 
erties of all operations - for example, 
that all operations must be reversible. 
Such higher order properties cannot be 
directly expressed using VDM. 

Similarly, any specification based 
on a system model and a specific set of 
operations has already committed to a 
considerable level of detail. The user 
might like to specify, for example, that 
there should be a complete set of 
query operations without having to 
specify what form these operations 
might take. Finally, only functional 
requirements can be captured using 
this kind of specification; usability, 

performance, reliability, and aspects of 
safety are all outside its scope. 

SYSTEM SPECIFICATION 

At the beginning of implementation, 
we decided to produce a complete spec- 
ification of CDIS to serve as a basis for 
design. Because of our experience in the 
requirements study, we abandoned the 
use of dataflow diagrams and based the 
specification primarily on the formal 
notation. However,  a specification 
entirely in VDM would not have been 
adequate for two main reasons: 

+ VDM provides no real help in 
specifying the user-interface details 

- one of the most important aspects 
of CDIS. 

+ The VDM specification describes 
only sequential aspects of behavior. 
CDIS processes many inputs concur- 
rently, and we had to know which oper- 
ations could occur concurrently and 
how they might interfere with each 
other. 

We therefore produced the system 
specification in three parts: a formal co~*f2 
specz@ation, a set of user-inte$zce defini- 
tions, and a conntm-en9 specif;;ation. The 
specifications constituted three different 
views of the system, rather than specifi- 
cations of three different system parts. 
Figure 5 shows the relations between 
the views. The core specification 
described the data managed by CDIS 
and every operation that CDIS could 
perform. Each operation was specified 
at a semantic level by defining its inputs, 
outputs, and effect on the state. For 
each operation in the core specification, 
there was a corresponding user-inter- 
face definition that described the dia- 
logue needed between user and 
machine to effect the operation, the 
required keystrokes or mouse actions, 
and the screen’s appearance during the 
dialogue. The concurrency specification 
showed what real-world processes could 
carry out the operations. It also identi- 
fied the data accesses and possible oper- 
ation sequence of each process. 

Core specification. Because CDIS has 
about 150. specification-level operations, 
we faced the problem of how to struc- 
ture the specification into understand- 
able modules. The top-level modules 
are related to major areas of functionali- 
ty: arrivals, departures, airports, dis- 
plays, and page, communications, and 
engineering management. Unfor- 
tunately, these modules are not inde- 
pendent and typical operations affect 
the state of several modules. For exam- 
ple, certain errors on the external links 
cause communications with the 
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National Airspace System to be lost; 
portions of the arrivals database thus 
become inv&d and result in changes on 
controller displays. To express this type 
of behavior clearly, we needed a modu- 
larization mechanism that let us write 
operations affecting the state of several 
modules in a natural way. 

WC considered three alternatives: 
VDM, which did not have a useful 
modularization mechanism; 2, which 
seemed to offer the kind of structuring 
we n&cd;’ and VVSL, a language with 
a VDM-like syntax and a well-devel- 
oped module structure that provided 
most of the facilities we needed.’ 
Recausc we had used VDM during the 
requirements analysis, wc were reluc- 
tant to switch to %  ~ even though we 
considered its schema calculus ideal for 
the kind of modularization we wanted. 
Furthermore, Z’s error-handling cor- 
ventions are clumsy compared with 
those of VVSL. We therefore decided 
to use VVSL. 

When one VVSL module imports 
another, it imports the constructs that 
are exported from the imported mod- 
ule. Unfortunately, there is no way of 
importing operations in this way 
because, unlike Z, WSL has no calcu- 
lus for combining operations. This 
caused us problems in building up the 
specification. For example, receipt of 
an arrival-update message affects the 
state in the arrivals and displays mod- 
ules. We wanted to write the update as 
the conjunction of an operation 
update-~arrival-data in the arrival 

-data module and an operation 
update~arrival~displays inthevar- 
ious display modules. However, in 
VVSL this was impossible, so we had 
to write two functions: cni7-updatep 

nrt*ival-data and n?-?-ival_dilta_llpdLzted. 
The first corresponds to the error 
checking of update~arrival-data, 

the second to the actual updates that 
would be carried out. The operation 
in the toll-level module then uses 

Core 
specification 

Concurrency 
specification 

User-interface 
definitions 

these two functions to describe the 
effect in the arrivals module. This 
convention is the one that was used in 
Figure 4b. It unfortunately led to 
clutter in the specification, and oper- 
ations were often not defined where 
WC expected to find them. This made 
the specification less readable than we 
would have liked. 

The only tools we used in preparing 
the core specification were some docu- 
ment-preparation macros for La’l’ex. 
At the time, the only type-checking 
tools available would not let us gener- 
ate easily readable output, nor would 
they support VVSL and its module 
constructs. If a suitable type-checker 
had been available, we could have 
eliminated many syntactic errors in the 
specification. On the other hand, we 
made several extensions to the notation 
that let us write the specification in a 
more compact and understandable 
way, and tools might have prevented us 
from doing that. 

User-interface definitions. The user- 
interface definitions contained two 
kinds of information: the interface’s 
physical appearance using pictures and 
text and the syntax of the user dialogues 
using state-transition diagrams. The 
definitions were developed using throw- 
away prototypes. 

Each operation described at an 
abstract level in the core specification 
had a concrete specification in a user- 

interface definition. However, the level 
of abstraction was not uniform; it 
depended on the operation’s complexity 
and importance. At one extreme, there 
is a single operation in the core speclfi- 
cation, Edit-Page, that corresponds to a 
complete document, the Editor’s User- 
Tnterface Definition. At the other 
extreme, the operations in the core 
specification describing how the 
approach-sequence allocator manipu- 
lates flights are at the level of individual 
keystrokes, because the behavior of this 
interface is critical and subtly related to 
the information being received from the 
National Airspace System while the 
operations are in progress. 

Concurrency specification. The concur- 
rency specification describes the i~hel-- 
e77t concurrency of the CDTS environ- 
ment - the processes that could run 
concurrently in the real world. There 
was one such process for each CD’IS 
user-input device, each connection to 
an external system, and each CDIS 
hardware device that was monitored for 
failure and recovery. 

Wc used two notations for the con- 
currency specification. Each process v~as 
defined in the language of CSP.” The 
alphabet of each process WJS the set of 
VVSL operations available to it. JVe 
thus checked that the concurrency spec- 
ification and core specification were 
consistent. 

We also drew dataflow diagrams 
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showing all the processes and all the 
state variables they read and wrote. 
These diagrams, unlike those used in 
structured analysis, had a precise 
semantics: a circle represented a con- 
current process, a data store represented 
a state variable, and dataflows represent- 
ed read and write access to state vari- 
ables by processes. This identified the 
shared data that needed to be accessed 
by several processes simultaneously. 

Findings. Overall, I believe the speci- 
fication phase was successful. It defined 
the functionality of CDIS precisely and 
provided a firm foundation for the pro- 
ject. Although the techniques we were 
using had not been used before in this 
combination or on this scale, we 

of the user-interface changed from an 
“inquire and get a snapshot” style to a 
continuous-update style. This had a 
major effect on the core specification 
that we would have preferred to avoid. 

We also had difficulty choosing the 
right level of detail. For example, we did 
not specify the validation of messages 

understood their strengths and limita- 
tions and had no major unexpected dif- well and some of the internal-consisten- 
ficulties. cy checking - which should have been 

However, the specification is far part of the specification - was left to 
from perfect; there are problems the design phase. 
remaining and lessons to be learned. Finally, the specification is only an 
First, it is hard to get a system overview approximation of the real CDIS behav- 
from the specification. The formal spec- ior. At the project’s outset we made the 
ification is not top-down - indeed, simplifying assumption that operations 
because we followed a declaration- are atomic. In practice, hoM-ever, an 
before-use style, it is almost completely operation can take sex-era1 seconds to 
bottom-up. We also failed to write execute, giving ample time for other 
enough English commentary in the operations to interfere. .-l a result, there 
core specification, which makes it even are observable states of CDIS - such as 
more difficult to read. when only some screens have updated 

We also faced the inevitable prob- in response to a message - which are 
lems at the boundaries between the not allowed by the specification. 
three kinds of specification. The user- Intuitively, it is obvious that these devia- 
interface definitions were not as com- tions from the specification are “harm- 
plete as the core specification because less,” but it is not clear how to decide 
the concrete representations in the what is and what is not allowable behav- 
user-interface definitions were (neces- ior. Further work on refining shared 
sarily) examples of the appearance, not systems may illuminate this question.’ 
exhaustive definitions. For example, we Writing the specification was a use- 
failed to specify the colors of all aspects ful exercise in its own right. The 
of the engineer’s display under all cir- process of defining the functionality 
cunistances, leading to uncertainties as and reviewing it with the Civil 
to what the behavior was meant to be. Aviation Authority helped us clarify 
We also did not separate concerns as requirements precisely. The formality 
much as we would have liked. During of the notation certainly helped us 

the design phase, for example, our idea focus this process. 

Once complete, the specification was 
used for change control. Like any large 
project, CDIS suffered many require- 
ments changes during its implementa- 
tion. The existence of a clear and com- 
plete definition was invaluable in help- 
ing us decide what was and was not a 
real change, and in evaluating the 
impact of proposed changes. 

The specification was the basis for 
design, implementation, and testing. 
For testing, the system specification 
superseded the original functional 
requirements, because it included every- 
thing they contained and more. The 
system tests were derived by the test 
team from the system specification and 
the nonfunctional requirements. In par- 
ticular, the formal specification was 
used to derive black-box tests by equiva- 
lence partitioning and boundary value 
analysis in a systematic way. Every test 
was traced back to the part of the speci- 
fication that was being tested, giving 
complete visibility of test coverage. 

Finally, the specification served as a 
basis for the user documentation, which 
was, inevitably, prepared before the sys- 
tem was complete. Again, the specifica- 
tion’s precision and completeness mini- 
mized the extent to which the user doc- 
umentation had to be revised once the 
real system was available. 

DESlGN 

As Figure 6 shows, the CDIS design 
consisted of an overview and four kinds 
of design components. There is a differ- 
ence between partitioning the design 
and the specification. Although the 
three kinds of specification were three 
different views of the same thing, the 
four different designs - functional, 
process, user-interface, and infrastruc- 
ha-e design -were designs for different 
pn~.~ of the software. Thus, the relation- 
ship between the design components 
reflected both a division of the software 
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into subsystems and a division of effort 
between teams. Also, because the differ- 
ent design components had different 
issues and required different progran- 
ming styles, we used different notation 
in each of the four kinds of design. We 
used formal methods in designing the 
application modules, the processes, and 
the LAN software. 

Functional design. To design the appli- 
cation modules, we devised a module 
structure for the application code and 
then specified the operations and inter- 
nal data for each module. The module 
structure was derived from the core- 
specification structure, with two modifi- 
cations. First, each module was usually 
divided into two layers - an operauon 
layer, used by the process or user-inter- 
face software, and a services layer, used 
by other application modules. Each 
module was then divided into three 
parts for CCPS-specific processing, 
workstation-specific processing, and 
common code. 

Our basic idea was to specify the 
application modules in VVSL as refine- 
ments of the corresponding specifica- 
tion modules. That is, the specification 
data types would be transformed into 
more concrete, computer-oriented 
types, and the operations redefined to 
use these types. 

At first, we planned to use VVSL 
only for the more critical modules and 
to develop those quite formally, writing 
down the refinement relations and the 
corresponding proof obligations. For 
less critical modules, we planned to 
write more code-oriented specifica- 
tions. Neither of these intentions was 
carried out in practice. First, it proved 
awkward to USC: different notations, sol 
we decided to specify almost everything 
in VVSL (for simple cases we did not 
give the full specification of each opera- 
tion, only its signature). Conversely, it 
turned out that the refinement relations 
were extremely large and cumbersome 

to write down, and we abandoned the 
attempt to establish a bully formal con- 
nection between the specification and 
the design. One problem was the 
large state-space of CDIS, in which 
each operation affected a large part 
of the state. 

There was also a more basic reason 
we were unable to write down the 
refinement relation. Although the set of 
data in a design module was a concrete 
form of the data in the corresponding 
specification modules, the design mod- 
ule as a whole was not a refinement of 
the specification module, because it usu- 
ally had a completely different set of 
operations. The specification of a user 
operation was not refined by a single 
operation on an application module; 
rather, it was implemented by a t?pansac- 
tioz that involved process code and user- 
interface code as well as operations in 
several application modules. 

For example, Figure 7 shows the 
transaction involved in a single user 
operation to set an airport data value. 
No single operation in the airport 
design modules corresponds to the 
specification operation - instead, the 
module offers services that allow the 
user interface to check the validity of 
the operation, to send a request to the 
CCPS to make the change and broad- 
cast the new data, an operation to 
accept the new data at the workstation, 
and many query operations to allow dis- 
play of the new data. It is an open ques- 
tion how, formally, these operations are 
related to the formal specification. 

Process design. Process design includ- 
ed the design of processes, tasks, inter- 
process communication, and data shar- 
ing. m7e derived the design primarily 
from the concurrency specification, 
along with the nonfunctional require- 
ments - especially performance - and 
the characteristics of the machines and 
operating systems we were using. We 
began by identifying the processes and 
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their communications mechanisms and 
shared data, and documenting thcese 
using dataflow diagrams. We then 
defined the response of each process to 
each possible event. 

We used finite-state machines to 
diagram the process design. The only 
novel thing we did was to use WSL 
predicates as a way of characterizing 
complex states. Also, the actions in the 
finite-state machines were application- 
module operations, specified in WSL. 
In the more complex machines, we 
had difficulty relating the machines 
back to the specification they wlzre 
implementing. In retrospect, encoding 
the finite state machines in VVSL 
might have been a better approach, 
g-iving us a better integration with the 
module specifications. 

User-interface design. We derived this 
design from the user-interface definitions 
and knowledge of the application-module 
services. The user interface was imple- 
mented using IBM Presentation 
Manager, which requires a particular pro- 
gramming style. WC expressed the design 
as specifications of Presentation-Manager 

IEEE SOFTWARE 



www.manaraa.com

Check : 
input ;,’ “‘I Request 

,: ” _ ,Bl i , 
update 

i: AIRPORT-P 

. 4 r ‘,_ 

“dpdtate 
Save“,.. 

1 Read 

aa Broadcast update “‘,,., 
i new 

update I, :I+ 
: data 

. . n,_,l,_ 

“>n n SM, IC  I  , I  a- 

_~‘ 

‘=.n_ ,a il,*l_,* , I ,  ,~, 
n’ 

EDD P-TO-P ~~ -- -- USER BCAST ~~ - LAN-IN --c-” EDD 

Initiating PS/2 

AIRPORT-S 

CCPS 

1 AIRPORT-P 

All PS,‘2s 

window classes, defining the messages proofs. Because the L-L\: n-as such a been published elsewhere.‘” 
and responses each could process. critical component and its design so 

complex, we were concerned about its 
infrastructure design. The infrastructure correctness. T;17e attempted proofs of 

mainly involved the LAN sofhvare. As correctness in two areas. The first was at 
part of the overall design, we developed the interface hen\-een the LA-KY and the 
a definition of the required LAV proto- engineering part of the CDIS applica- 
co1 and the interface between the LAX tion. The L,L\’ software detects failed 
software and the rest of CDIS. We then machines and connections. It then either 
produced a design for the LAN software takes appropriate action or passes infor- 
itself. mation to the rest of CDIS, which then 

The LAN software was a difficult makes decisions about stopping and 
area because the requirements were starting failed machines. Because 
stringent: in-order delivery of all mes- Imachines at e2lch end of the link can fail 
sages, without duplication, over two at anv time - e\-en during restart after a 
token rings with an automatic and invisi- previous failure - it is hard to eliminate 
ble switch in case of failure. the possibility of deadlock. To veri’& the 
Performance considerations dictated protocol, u-e n-rote a simplified version 
that the unreliable broadcast service pro- and used Edinburgh Universitv’s 
vided by the Netbios protocol had to be Concurrency 1170rkbench9 to establish 
used as the basis of most communica- temporal formulas representing facts 
tions, so a complex layer of CDIS soft- such as “following a failure it is alw2avs 
ware had to be built on top. eventually possible to recot-er.” This 

The requirements for the LAY soft- gave us some confidence in the proto- 
ware were initially expressed using ~01’s correctness. 
VVSL. ‘Ilhis was not entirely successful, The second area u-as recovering from 
because VVSL did not easily capture the message loss. TT’e II-rote two CCS 
protocol’s dynamic behavior and the processes: one representing a desired 
relationship between the behaviors at behavior specification and another 
the two ends of the communication. For intended to implement that beha\Gor. 
that purpose, we needed a notation that U7e tried to pro\-e that the implementa- 
supported concurrency. We used the tion was correct, even when a loss was 
Calculus of Communicating System? suffered during recovery. However,  this 
for later parts of the requirements and was not possible because the protocol 
for design. We translated the CCS suffered from a subtle concurrency 
processes directly into the implementa- problem. Because it would have been 
tion code. We used a form of value- almost impossible to find that bug 
passing CCS in which we incorporated during testing, attempting the proof 
WSL definitions of data types and mes- let us correct the design rather than 
sage structures. put a system into service that could at 

The LAN software design was the some point exhibit an incomprehensi- 
only area of CDIS in which we used ble fault. Details of this work have 

Findings. The use of formal methods 
in large-system design is less understood 
than their use in specification. We had 
some difficulties designing CDIS as for- 
mally as we would have liked. 

Because design is many-dimensional, 
we were forced to use different methods 
for designing different parts of the sys- 
tem and there was no unifying way we 
could formalize the design as a whole - 
no theory of software architecture that 
we could use to validate the design. In 
particular, conventional refinement rules 
do not apply when the design structure 
differs from the specification structure 
~ as it inevitably will in any large, dis- 
tributed system. Our  initial misunder- 
standing of this point led to problems at 
the interface between the application 
modules and the user interface, and a lot 
of necessary operations were missed in 
our first attempts to specify the applica- 
tion modules. 

We had difficulty deciding on the 
right level of formality because the 
design was large and it was impractical 
to formalize all of it. We did not always 
make the right decisions. Formalizing 
too much gave LIS unnecessary work; in 
some pathological cases, the formal 
specification was more complicated than 
the code itself. Not formalizing enough 
meant that developers were sometimes 
faced with operations for which they had 
signatures but no clear definition of 
what was required. We probably should 
have adopted a simple rule: specie all 
update operations. 

Despite these problems, the func- 
tional design was largely successful in 
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generating a sound design that satisfied 
the specification. Few of the faults in 
CDIS can be attributed to an incorrect 
relationship between the specification 
and the functional design. The main 
benefit of the formal application design 
was that each module interface was pre-- 
cisely defined so clients knew exactly 
what they could rely on. We also found 
that, starting from the WSL mod& 
specifications, the implementation of 
application modules was relatively 
straightforward and the code usually 
reflected the specification in a fairly 
direct way. ‘I’his gave us good traceabili-, 
ty between the code and the design. In 
some cases, the code was developed. 
using rigorous correctness arguments. 

As for infrastructure design, the CCS’ 
design of the LAN software was particu- 
larly successf~~l in mastering the com- 
plexity of a difficult area and generating 
extremely reliable code. 

We were unable to use a really formal 
process, such as carrying out proofs, to 
any large extent. This does not mean that 
such a process is always impractical; how- 
ever, yogi have to balance the cost of using 
formality against the cost of zot using it. 
From the developer’s point of view, the 
purpose of a formal step such as a proof is 
to discover errors (there are other purpos- 
es, such as when a customer uses a proof 
for ~JSJUY~~XL’, which has different costs and1 
benefits). The expected cost of not carry-, 
ing out a proof depends on the probability 
of an error existing that the proof alone 
would have discovered, along with the 
cost of that error. In the case of refine- 
mcnt proofs, we believed that the expect- 
ed cost was small compared with the cost 
of achrally doing the proofs; in the case of 
the LAN we believe it was large and easill 
justified our modest proof effort. 

The operational CDIS software 
contains about 197.000 lines of non-. 

blank, noncomment C code. A compa- 
rable amount of code was also written 
for test harnesses, emulators, and other 
nonoperational software. The specifica- 
tion documents were about 1,200 pages 
and the design documents about 3,000 
pages. 

As Table 2 shows, the total effort on 
the implementation project was about 
15,500 person days. At about 13 lines of 
code per day, the overall effort was com- 
parable with or better than other pro- 
iects of the same size and kind (it is bet- 
ter than a simple Cocomo” prediction, 
for example). If anything, the use of for- 
mal methods saved rather than cost us 
effort. The distribution of effort is not 
very different from the standard 
Cocomo model, although as Table 3 
shows, we did spend a slightly higher 
percentage of time on requirements and 
specification. 

Faults. During development, develop- 
ers delivered about 11 faults per thou- 
sand lines of code to the integration and 
system-test team. In the first 20 months 

after delivery, CDIS manifested ab#Dut 
150 faults - about 0.75 faults per 
KLOC. We believe this figure is signifi- 
cantly better than that on comparable 
projects.” Furthermore, few of these 
faults were specification or requirements 
problems, which often persist into the 
delivered system and prove costly to 
eliminate. 

Customer’s view. The Civil Aviation 
Authority was mainly affected by tour 
use of formal methods in the system 
specification, rather than the design. 
From their perspective, the use of for- 
mal methods in system specification had 
both advantages and disadvantages. The 
main advantages were: 

+ The specification was comprehen- 
sive. The C4A team could refer to the 
specification to answer almost any ques- 
tion about what CDIS would do. 

+ The specification was precise. 
There was rarely any doubt about what 
it meant and how CDIS would behave. 

+ The use of the specification to 
derive the system tests meant that 
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CAA could see the level of test&less 
of CDIS at any time. 

On the other hand, there were some 
drawbacks: 

+ It was difficult to get an overvievr 
from the formal specification, because it 
was neither top-down nor hierarchical. 

* The core specification was a poor 
aid to internal communication at CAA. 
Because the notation was only under- 
standable to the CAA team directly 
working on CDIS, they had to interpret 
the specification to other people in the 
organization. 

+ The specifications were not clear 

+ The user-interface specification was 
not as precise and complete as the core 
specification and thus was not as well 
defined as it should have been. 
Furthermore, the relationship between 
the two specifications was not always clear. 

about certain timing issues - in partic- 
ular the point at which events became 
visible on the user interface. 

The lessons that should be drawn 
from this for fuhrre use of formal me& 
ods are two. First, the formal specifica- 
tion should be accompanied by much 
more informal explanation using 
English text, diagrams, and any other 
convenient notation. Second, more 
emphasis should be placed on making 
the user-interface specification precise 
and complete. 

C 

making that effective by combining for- 

DE vans a large and complex pro- 
ject and man\- factors contributed 

to its success. One important factor n’as 
that we used formal methods with other 
good software-engineering practices. I 
think we ha\-e learned lessons about 

mality with more comprehensible expla- 
nations and better specification structure. 

Fornlal methods also contributed to 
our design process, but there are clearly 
many other aspects of good design. 
Carrying out effective formal design 
will require more work on understand- 
ing the different design dimensions and 
large-scale architectures. 

Using formal methods helped LIS to 
build the right system and helped us 
to build it right - at no extra cost. 
Our project shows that using formal 
methods on real, large-scale projects 
is not only practicable but beneficial. 
The question software engineers 
should now be asking about formal 
methods is not whether to use them, 
but horn best to benefit from them as 
part of a complete software-engineer- 
ing approach. + 
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